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ABSTRACT

In this paper we present a high order weighted essentially non-oscillatory (WENO) scheme

for solving a multi-class extension of the Lighthill-Whitham-Richards (LWR) model. We

first review the multi-class LWR model and present some of its analytical properties. We

then present the WENO schemes, which were originally designed for computational fluid

dynamics problems and for solving hyperbolic conservation laws in general, and demonstrate

how to apply these to the present model. We found through numerical experiments that the

WENO method is vastly more efficient than the low order Lax-Friedrichs scheme, yet both

methods converge to the same solution of the physical model. It is especially interesting to

observe the small staircases in the solution which are completely missed out, because of the

numerical viscosity, if a lower order method is used without a sufficiently refined mesh. To

demonstrate the applicability of this new, efficient numerical tool, we study the multi-class

model under different parameter regimes and traffic stream models. We consider also the

convergence of the multi-class LWR model when the number of classes goes to infinity. We
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show that the solution converges to a smooth profile without staircases when the number of

classes increases.

Key Words: multi-class LWR model, traffic flow, weighted essentially non-oscillatory

scheme, Lax-Friedrichs scheme, Godunov scheme

1. INTRODUCTION

Lighthill and Whitham (1955) and Richards (1956) independently proposed a simple

continuum model, now known as the LWR model, to describe the characteristics of traffic

flow. In this model, a traffic stream model (a relationship between the traffic state variables

of flow, speed and density, e.g. Greenshields (1934)) is supplemented by the continuity

equation of vehicles, and the resultant partial differential equation presumably could be

solved to obtain the density as a function of space and time. For a specific form of

Greenshields’ traffic stream model, the solution can be obtained analytically (Wong and

Wong, 2002). Although aiming to provide a coarse representation of traffic behavior, the

LWR model is capable of reproducing qualitatively a remarkable amount of real traffic

phenomena such as shock formation. Nevertheless, there are still some puzzling traffic

phenomena observed on the highway, such as the two-capacity or reverse-lambda state in the

fundamental diagram, hysteresis of traffic flow and platoon dispersion, that this simple LWR

model cannot address or explain.

Recently, a multi-class model, extended from the LWR model, with heterogeneous drivers

was formulated (MCLWR model) (Wong and Wong, 2001). Let there be M classes of road

users with different speed choice behaviors in response to the same traffic density when
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traveling on a highway section. It means that for a given total density, there exists a

distribution of equilibrium speeds by different user classes. It is expected that the variation

around the mean speed (averaged over all user classes) decreases when traffic density

increases, due to the tighter interactions between road users. Let ),( txqm , ),( txkm  and

),( txum  be, respectively, the flow, density and speed of user class m in the space-time

domain. The total density on a highway section can then be obtained as

�
�

�

M

m
m txktxk

1
),(),( . (1)

The flow, density and speed variables of a particular class are subject to the following

definitional relationship,

Mmtxktxutxq mmm ,,2,1),,(),(),( ����� . (2)

From the law of conservation of vehicles, each user class should satisfy the following

continuity equation,

 Mm
x

txq
t

txk mm ,,2,1,0
),(),(

����
�

�
�

�

�
, (3)

which describes the conservation of vehicles at any location at any time along a

topographically homogeneous highway section without intermediate entrances or exits. 
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The core of the present extension is to assume that the choice of speed of a particular user

class is not only affected by the presence of this user class, but also by all other user classes

on the highway. A general form of speed-density relationship can be written as

MmkkkUtxu Mmm ,,2,1),,,,(),( 21 �� ��� . (4)

For the isotropic case, the above relationship would take a simpler functional form as

MmkUtxu mm ,,2,1),(),( ���� , (5)

where k is the total density determined by equation (1).

Combining the above equations, the problem can be formulated into a set of partial

differential equations,

Mm
x

txk
txc

t
txk M

n

n
mn

m ,,2,1,0
),(

),(
),(

1
����

�

�
�

�

�

�
�

, (6)

where

Mnm
k
U

kUc
n

m
mmnmmn ,,2,1,, ���

�

�
��� , (7)

is the kinematic wave speed of user class m in response to the presence of class n users, and

1��mn  if m = n; and 0��mn  if m � n. Note that the problem stipulated in equation (6)

reduces to the original LWR model when M = 1 (i.e. homogeneous users). The problem

becomes one of solving the set of differential equations (6), or better still the conservation
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form (3) with mq  defined by equation (2) and mu  defined by equation (5), subject to certain

initial spatial and time boundary conditions. Although the problem formulation is straight

forward, it was found that the model is capable of producing the desired properties of a

macroscopic traffic flow model and it explains many puzzling phenomena, such as the two-

capacity or reverse-lambda state, hysteresis, and platoon dispersion, but it would not be

subject to other deficiencies such as wrong-way travel (Daganzo, 1995).

In Wong and Wong (2001), the MCLWR model was solved by a first order Lax-Friedrichs

finite difference scheme. Although this finite difference scheme is commonly used to solve

the original LWR model (Lebacque, 1984; Michalopoulos et al., 1984), it is argued that this

first order Lax-Friedrichs scheme may produce smeared solutions near discontinuities due to

excessive numerical viscosity. The effect of numerical viscosity will diminish with mesh

refinement, but it will be very costly to solve a very refined mesh. More recently, Lebacque

(1996) successfully applied the Godunov scheme, introduced by Godunov (1959), to solve

the LWR model. The Godunov scheme is subject to smaller numerical viscosity, but it

requires a Riemann solver as its building block, which is very difficult, if not impossible, to

develop for the MCLWR model. This is because the multi-class model does not seem to be

either genuinely nonlinear or linearly degenerate (LeVeque, 1992). Nevertheless, it is

important to note that, even though for first order methods the Godunov scheme is more

accurate than the Lax-Friedrichs scheme, this difference diminishes dramatically when higher

order schemes are considered (Shu, 1998). Both Godunov and Lax-Friedrichs schemes

converge to the same physical solution of the model with a sufficiently refined mesh. This

can be proved for the scalar and some system cases, and can be observed for more complex

systems (LeVeque, 1992; Shu, 1998). 
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This paper presents the solution of the MCLWR model by a weighted essentially non-

oscillatory (WENO) scheme (Jiang and Shu, 1996). The WENO scheme is a very robust

numerical scheme and is found to be very useful in computational fluid dynamics as well as

in other applications. The numerical results from WENO are compared with those obtained

from the first order Lax-Friedrichs method. In the special case when all the eigenvalues of the

kinematic wave matrix of the system (6) are positive, the Godunov solver becomes the simple

upwind solver. In this special case we have verified that the first order Godunov solver

converges faster than the first order Lax-Friedrichs solver, but slower than the fifth order

WENO solver, while all three converge to the same physical solution. In Section 2, some

analytical properties of the MCLWR model are presented for a 2-class model. The WENO

scheme for the MCLWR is given in Section 3. Section 4 compares the convergence

characteristics of the numerical schemes, shows the numerical solutions for different

congestion regimes, and studies the asymptotic case of an infinite number of classes.

2. SOME ANALYTICAL PROPERTIES OF THE MCLWR MODEL

2.1 Hyperbolicity of the system

Let ),,,Col( 21 Mkkk ��k  be a column vector containing all M density variables in the

MCLWR model. For a smooth solution k (meaning that k has at least first order continuous

derivatives in x and t), the set of partial differential equations (PDEs) (3) can be rewritten as

 0)( �
�

�
�

�

�

xt
kkAk , (8)



7

where )()( kqkA k��  is a kinematic wave matrix containing all the elements of cmn in

equation (7), and ),,,Col( 21 Mqqq ��q  is a column vector of the flow fluxes of all classes.

However, when the solution k becomes discontinuous (containing shocks or other

discontinuities), the two systems (3) and (8) are not equivalent. Thus to be on the safe side,

one should always use conservative schemes to solve (3) directly.

The system (3) is called hyperbolic if the eigenvalues of the kinematic wave matrix )(kA  are

all real and there is a complete, linearly independent set of eigenvectors. Hyperbolic systems

are mathematically well-posed, meaning that their solutions depend continuously on the

initial conditions. This can be proved for the linear case and also for some nonlinear cases.

An important issue in verifying the reasonableness of a model is to check if it is hyperbolic.

We confirm that the system (3) is hyperbolic for the practical choices of traffic stream models

and their parameters. This verification is performed analytically for the 2-class case and

numerically for the general M-class case to be discussed in Section 4.

For the 2-class case (M=2), the kinematic wave matrix is a 2� 2 matrix given by

 ��

�
��

�
���

���
	 )()()(

)()()(
22222

11111
kUkkUkUk

kUkkUkkUA , (9)

where U1(k) and U2(k) are defined in equation (5). The two eigenvalues of the kinematic

wave matrix are thus given by

 � � 2)()()()( 2221112,1 DkUkkUkUkkU �������� , (10)

where
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 � � � �� � )()(4)()()()( 2121
2

222111 kUkUkkkUkkUkUkkUD ������� . (11)

Clearly D > 0 which implies that the two eigenvalues are both real and distinct. Thus the

system is hyperbolic.

We could obtain analytical formulas for the eigenvalues of the kinematic wave matrix for the

3-class or even the 4-class case (M = 3 or 4), however the formulas are quite complex and it

is not easy to see whether the eigenvalues are always real. At any rate, this approach would

not work for the multi-class case with M > 4, as no analytical formulas for the eigenvalues

would be available.

We thus resort to implementing a numerical eigenvalue solver to verify a posteriori that the

eigenvalues are always real for all the test cases in Wong and Wong (2001) and in this paper.

Indeed through all the numerical tests, non-real eigenvalues never appear for the kinematic

wave matrix. Although this is not a rigorous proof that the MCLWR model is always

hyperbolic, it at least gives validity to the numerical experiments in Wong and Wong (2001)

and in this paper since the models under all these cases are hyperbolic.

2.2 First order traveling waves

In this section, we apply a linearization approach to demonstrate the traveling wave

properties of the MCLWR model (Whitham, 1974). To simplify the analysis, we also

consider the simple 2-class system and assume a modified Greenshields’ form of traffic

stream model,
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�
�

�
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�

�
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�

�
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jam

21
22 1

k
kkuu f , (12)

where, for Class 1 and Class 2 traffic, u1 and u2 are the traffic speeds, k1 and k2 are the

densities, and uf1 and uf2 are the free-flowing speeds, respectively, while kjam is the jam

density of the highway. The system of differential equations can be written as

 
� �

0111
�

�

�
�

�

�

x
ku

t
k    and   

� �
0222

�
�

�
�

�

�

x
ku

t
k . (13)

For small perturbations of densities, r and w, around the steady state densities 1k  and 2k

respectively, we can write

 rkk �� 11    and   wkk �� 22 . (14)

Substituting equation (14) into equation (13) and neglecting higher order terms, we can show

that

x
w

k
ku

x
rkkk

k
u

t
r ff

�

�
�

�

�
���

�

�

jam

11
21jam

jam

1 )2( (15)

and

 
x
rk

k
u

x
wkkk

k
u

t
w ff

�

�
�

�

�
���

�

�
2

jam

2
12jam

jam

2 )2( . (16)

Eliminating w from equations (15, 16), we have



10

2

2

2
jam

2121
21 ))((

x
r

k

uukk
r

xtxt
ff

�

�
�

�

�
��

�

�

�

�
��

�

� , (17)

where

jam

11
11 k

uk
u f

���    and   
jam

22
22 k

uk
u f

��� . (18)

In equation (18), the left-hand side is a wave operator, which indicates that there are two first

order traveling waves of speeds �1 and � 2 in the traffic stream. It is interesting and important

to note that these class-characterized waves always travel more slowly than the fastest vehicle

in the traffic stream. This linearization approach can also be generalized to any number of

classes. Also note that when substituting the modified Greenshields’ form of traffic stream

model (12) into equation (10), the eigenvalues are identical to the traveling wave speeds

shown in equation (18) for this 2-class case, when one of the steady state densities 1k  or 2k

is equal to zero.

3. WENO NUMERICAL SCHEME

In recent years many high order, high resolution, numerical methods have been developed in

the literature to solve a system of partial differential equations (PDEs). The main applications

are in computational fluid dynamics, but there are also applications in other physical and

engineering areas. In this paper we apply the high order finite difference scheme, weighted

essentially non-oscillatory (WENO) scheme (Jiang and Shu 1996; Balsara and Shu, 2000), to

solve the MCLWR system (3). In particular, the fifth order WENO scheme in Jiang and Shu

(1996) is used. The numerical procedure is summarized in this section. These numerical
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methods are found to be very useful because of their simultaneous high order accuracy and

non-oscillatory property in the presence of shocks and other discontinuities or sharp gradient

regions in the solution, or, in general, for convection dominated problems. For more details of

such methods, see Shu (1998) and Shu (2002).

We now describe the computational procedure of the fifth order WENO scheme. Spatial

discretization is discussed first. We start from the simple case of a scalar equation (3), i.e. a

1-class model, and assume 0)(
�

�

�

k
kq , i.e. the wind direction is positive. More general cases

will be described later. The computational domain is discretized into a uniform mesh of J grid

points:

 x j xj � � ; Jj ,...,2,1� , (19)

where �x  is the uniform mesh size on the spatial axis. A smooth non-uniform mesh could

also be used to concentrate grid points near certain regions to obtain better resolution. A

conservative numerical approximation )(tk j  to the exact solution ),( txk j  of (3) satisfies the

following ordinary differential equation (ODE) system:

 � � 01
d

)(d
2/12/1 ��

�
�

�� jj
j qq

xt
tk

�� , (20)

where 2/1�jq�  is called the numerical flux, whose design is the key ingredient for a successful

scheme. For the fifth order WENO scheme, the numerical flux 2/1�jq�  is defined as follows:
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 )3(
2/13

)2(
2/12

)1(
2/112/1 ����

������ jjjj qqqq ���� , (21)

where )(
2/1

p
jq
�

�  are the three third order fluxes on three different stencils given by

 ,
6

11
6
7

3
1

12
)1(

2/1 jjjj qqqq ���
���

� (22a)

 ,
3
1

6
5

6
1

11
)2(

2/1 ���
���� jjjj qqqq� (22b)

 ,
6
1

6
5

3
1

21
)3(

2/1 ���
��� jjjj qqqq� (22c)

and the nonlinear weights p�  are given by

 ,
~

~

3
1�
�

�

�

��

l l

p
p   ,

)(
~

2
l

l
l

���

�
�� (23)

with the linear weights l�  given by

 ,
10
1

1 ��  ,
5
3

2 ��  ,
10
3

3 �� (24)

and the smoothness indicators l�  given by

 2
12

2
121 )34(

4
1)2(

12
13

jjjjjj qqqqqq �������
����

, (25)
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 2
11

2
112 )(

4
1)2(

12
13

����
������ jjjjj qqqqq , (26)

 2
21

2
213 )43(

4
1)2(

12
13

����
������� jjjjjj qqqqqq . (27)

Finally, �  is a parameter to prevent the denominator from becoming 0 and is fixed at

610���  in all the computations in this paper. The choice of �  does not affect accuracy: the

numerical errors can go much lower than � , reaching machine zeros (around 10-13 for double

precision). Notice that we have used the short notation qj to denote q(kj(t)). We remark that

the stencil for the scheme is biased to the left because of the positive wind direction.

This finishes the description of the fifth order finite difference WENO scheme (Jiang and Shu

1996) for the scalar equation with a positive wind direction. As we can see, the algorithm is

actually quite straight forward and there are no parameters to be tuned in the scheme. The

main reason that it works well, both for smooth solutions and for solutions containing shocks

or other discontinuities or high gradient regions, is that the nonlinear weights, determined by

the smoothness indicators, are automatically adjusting themselves, based on the numerical

solution, to use the locally smoothest information given by the solution. We refer to (Jiang

and Shu 1996; Balsara and Shu 2000; Shu 1998; and Shu, 2002) for accuracy tests and

computational fluid dynamics simulations using this method.

If the “wind direction” 0)(
�

�

�

k
kq , the procedure for computing the numerical flux 2/1�jq�  is a

mirror image with respect to the point xj+1/2, of what is described above. The stencil would

then be biased to the right. If k
kq

�

� )( changes sign, we will use smooth flux splitting 
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 )()()( kqkqkq ��
�� (28)

where 0)(
�

�

�
�

k
kq  and 0)(

�
�

�
�

k
kq , and apply the above procedures separately on each one of

them. There are many choices of such flux splitting, however the most popular one is the

Lax-Friedrichs flux splitting where

 ))((
2
1)( kkqkq ���

� , (29)

with k
kq

k �

�
��

)(max .

For hyperbolic systems of conservation laws (3), the eigenvalues of )(kA  are all real:

 )(...)(1 kk M���� . (30)

A safe but rather expensive way to generalize scalar schemes to such system cases is to

utilize local characteristic decompositions, see Shu (1998) for details. However, such a

procedure depends on the explicit formulas for the eigenvectors of )(kA , which are not easy

to obtain for the MCLWR model when 3�M . We have thus adopted a simpler, component-

wise generalization, namely using the Lax-Friedrichs flux splitting (29) for each equation in

the system, with a common � . Ideally,� should be chosen as the largest (absolute value)

eigenvalue in (30), however closed form formulas for the eigenvalues (30) are also difficult

to obtain for the MCLWR model when 3�M . We have thus chosen �  as
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 � �muu ,...,max 1�� , (31)

where the speeds um are defined in equation (5). Numerical experiments in the next section

indicate that this works well for the MCLWR model.

For the time discretization, the computational domain is discretized into a mesh of N grid

points: Nnttt nnn ,,2,1;1
�����

� , where nt�  is the mesh size on the time axis. We adopt

the third order TVD Runge-Kutta method (Shu and Osher 1988):

 ),()1( nnnn tkLtkk ��� , (32a)

 ),(
4
1

4
1

4
3 )1()1()2( nnnn ttkLtkkk ������ , (32b)

 )
2
1,(

3
2

3
2

3
1 )2()2()3( nnnn ttkLtkkk ������ , (32c)

where L is the approximation to the spatial derivatives:

 
x
kqtkL

�

�
��

)(),( (33)

established by the WENO procedure outlined above. This time discretization is proved stable

if the first order Euler forward time stepping of the spatial operator is stable (Shu and Osher,

1988; Gottlieb et al., 2001). Note that this time discretization is very simple and consists of

convex combinations of three first order Euler forward steps. A CFL condition is needed for

stability:
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 CFL�
�

�
�

x
t n

n , (34)

where n
�  should be taken as the largest (absolute value) eigenvalue in (30) for time level n,

but for the MCLWR model it is taken as that in (31) instead. CFL should be less than one for

stability and in our computation it is taken as 0.6.

4. COMPUTATIONAL EXPERIMENTS

In this section we present our computational experiments of the MCLWR model using the

high order WENO scheme, and compare the results with other numerical schemes.

4.1 Traveling wave speeds

We start with a 2-class model with the modified Greenshields’ form of traffic stream model

as in equation (12). Consider a highway 2 km long with an initial platoon of maximum

density 40 veh/km as shown in Figure 1. The left boundary has no inflow (density equals 0)

for all time, and the right boundary is a free outflow (Neumann boundary condition). The

free-flowing speeds of Class 1 and Class 2 drivers are 60 km/h and 120 km/h respectively.

We assume an equal distribution of drivers in the platoon. The jam density of the highway is

200 veh/km. The dispersion of the platoon at time 0.01 hours is shown in Figure 2. It is

interesting to note that the solution forms two uniform density platforms or staircases, (to be

discussed later), each of which contains only a single class of driver. The widths of the

platforms are marked by points A, B, C and D in the figure, with the platform A-B containing

Class 1 drivers only, and the platform C-D containing Class 2 drivers only. In Figure 3, we
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show the speed trajectories of these points, A, B, C and D, which numerically measure the

wave speeds, together with the values obtained from the eigenvalue formulas (10) and those

given by the linearized formulas (18). The result shows that the linearized wave speeds give

reasonable predictions of actual nonlinear wave speeds in this case.

4.2 Convergence study of the numerical methods

For a nonlinear system (3) with possible shocks and other discontinuities, it is not possible to

prove mathematically that the WENO scheme, or any other scheme, converges. However,

experience from computational fluid dynamics indicates that the WENO scheme is very

robust and always converges for hyperbolic systems. We would like to verify through

numerical experiments the convergence of the WENO scheme for the MCLWR model in this

subsection.

For this purpose we take Experiment 2 of Wong and Wong (2001) as our test case. Other test

cases have also been experimented with, yielding similar results. In this experiment, we

consider the same highway section and initial density platoon as that in Section 4.1, but with

the number of driver classes increased to M = 9. The traffic stream model takes the modified

Drake’s form (Drake et al., 1967) as

� � MmkkukUu fmmm ,,2,1,2/)/(exp)( 2
0 ����� . (35)

The free flowing speeds ufm of these drivers are taken as 60.0, 67.5, 75.0,..., 120.0 km/h, and

the optimal density k0 = 50 veh/km. The distribution in density for these user classes is given

by Figure 4. The left boundary has no inflow (density equals 0) for all time, and the right
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boundary is a free outflow (Neumann boundary condition). We plot the density at t = 0.015

hours to verify numerical convergence.

We first plot, in Figure 5, top left, the total density computed with the first order Lax-

Friedrichs scheme (described in detail in Wong and Wong (2001)) using 6400 grid points

(solid line), versus that computed with the fifth order WENO scheme using 100 grid points

(circles). They overlay each other quite well, indicating two things:

1. The resolution of the first order Lax-Friedrichs scheme with 6400 points is similar to that

of the fifth order WENO scheme with 100 points. Thus the high order WENO scheme is

vastly more efficient than the first order Lax-Friedrichs scheme for this test case. This

conclusion is also valid in general.

2. If one uses only a first order scheme to compute, one might decide prematurely that this is

a convergent solution, since 6400 points make a very refined mesh.

In fact, the solution in Figure 5, top left, is not a convergent one numerically, although the

solution is good enough to demonstrate the physical characteristics of the traffic model.

Nevertheless, in this paper, we study the numerical convergence characteristics of the traffic

model in greater detail. In Figure 5, top right, we plot the WENO solutions using 100 points

(dash-dot line), 400 points (dashed line) and 1600 points (solid line). We can see that the

solution has observable differences for all these grids (the difference between the 400 points

and 1600 points results is small but still noticeable, especially when enlarged near the

staircases). In particular, notice the small staircases in the increasing part of the solution.

There are 9 such small staircases, clearly related to the 9 user classes. The coarse mesh (100

points) WENO solution and most of the first order Lax-Friedrichs solutions completely miss
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these staircases because of the excessive numerical dissipation. To verify that the numerical

solution is indeed convergent, we have also computed it using WENO with 3200 grid points.

The solution (not shown) completely overlays that with 1600 grid points, indicating that the

WENO solution with 1600 grid points can be considered a numerically convergent solution.

In Figure 5, bottom left, we plot the first order Lax-Friedrichs solutions using 400 points

(dash-double dot line), 1600 points (dash-dot line), 6400 points (dashed line) and 25600

points (solid line). We can see that the solution does eventually converge with grid

refinements, however such convergence is very slow and one needs a huge number of grid

points (in this case 25600 points) to see the staircases. To convince the reader that both the

WENO scheme and the Lax-Friedrichs scheme converge to the same solution, in Figure 5,

bottom right, we plot the WENO solution using 400 points (circles) and the Lax-Friedrichs

solution using 25600 points (solid line). They overlay each other quite well, both showing the

small staircases.

In Figure 6, left, we plot the total density as a function of spatial location, for various times, t

= 0, 0.005, 0.010, ..., 0.025 hours. We can clearly see the evolution of the dispersion of the

back of the platoon and the appearance of staircases. In Figure 6, right, we plot the flow

(defined as the sum of the fluxes in (2) over all M classes) as a function of time, t, at various

spatial locations, x = 0.2, 0.4, 0.6,..., 2.0 km. We can clearly see that the small staircases are

also present in these flow plots. The results in Figure 6 are obtained using WENO with 1600

grid points, which overlays well the WENO results using 3200 grid points (not shown here),

indicating that they are reliable, numerically convergent solutions of the 9-class model.
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To assure the reader that these staircases are not numerical artifacts of the WENO schemes,

we plot in Figure 7 the total density as a function of spatial location, for various times, t = 0,

0.005, 0.010, ..., 0.030 hours, using the 9-class model but with ufm = 90 km/h for all 9 classes.

Clearly this returns to a single user model and the solution is now free from the staircases.

The results in Figure 7 are obtained using WENO schemes with 1600 grid points, which

overlay the WENO results using 3200 grid points (not shown here), indicating that they are

reliable, numerically convergent solutions. Note that a single user model is the original LWR

model, which shows no dispersion behavior, as revealed by the figure.

In summary, in this subsection we have shown that

1. Using the fifth order WENO scheme is vastly more efficient than using the first order

Lax-Friedrichs scheme, saving, by a factor of 64, on the number of mesh points needed to

reach the same resolution;

2. One must be very careful in performing the grid refinement study to verify numerical

convergence, for otherwise one might miss some very important solution features, such as

the staircases, which might otherwise be completely obscured by numerical dissipation;

3. Both the high order WENO scheme and the low order Lax-Friedrichs scheme eventually

converge to the same physical solution with grid refinements.

Finally in this subsection, we point out that we have verified a posteriori, by a numerical

eigenvalue solver, that all the eigenvalues of the kinematic wave matrix stay non-negative

during the time evolution. We remark that this is true only for this case and not in general for

cases in the next subsection. For this special case, it is straight forward to write out the first

order Godunov scheme, which coincides with the simple upwind scheme (using backward
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difference to approximate the spatial derivatives). In Figure 8, we show the convergence

history as well as the density and flow graphs computed by the first order Godunov scheme.

We can clearly see that the resolution of the first order Godunov scheme is better than that of

the first order Lax-Friedrichs scheme but worse than that of the fifth order WENO scheme.

Moreover, the first order Godunov scheme converges to the same solution as the other two

schemes, when we overlay the solutions (not shown here). 

The first order Godunov scheme has merit in that it is computationally fast. However, the

clocked times (shown in Table 1) for both the fifth order WENO code and the first order

upwind code (Godunov in the special case of all positive eigenvalues), which achieve the

same resolution, still favor the WENO scheme. Clearly the advantage of the simple and fast

computation of the first order Godunov scheme is offset by the use of more grid points to

achieve higher accuracy. We also point out again that the Godunov scheme for this system is

very difficult, if not impossible, to obtain when the eigenvalues change sign.

4.3 Numerical experiments for different congestion regimes and traffic stream

models

In this subsection, we perform more numerical experiments, using the WENO scheme with

1600 grid points (which gives numerically convergent solutions), with different model

characteristics for the MCLWR model. We still use the 9-class model with the density

distribution given by Figure 4, but we consider the following four cases:
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1. The initial density distribution represents a platoon in the non-congested regime, as given

in Figure 1. The traffic stream model takes the modified Drake's form (35). This case has

already been considered in the previous subsection;

2. The initial density distribution represents a platoon in the congested regime, as given in

Figure 9, which has a higher maximum initial density value of 120 veh/km. The traffic

stream model is identical to that in Case 1;

3. The initial density distribution represents a platoon in the non-congested regime, as given

in Figure 1. The traffic stream model takes the modified Greenshields’ form (36) with a

jam density of jamk  = 200 veh/km,

� � MmkkukUu fmmm ,,2,1,/1)( jam ����� ; (36)

4. The initial density distribution represents a platoon in the congested regime, as given in

Figure 9. The traffic stream model is identical to that in Case 3.

The density versus distance plots for various times, and the flow versus time plots for various

spatial locations, are given in Figures 6, 10, 11 and 12, respectively, for these cases. It is clear

from these figures that dispersion at the tail of the platoon is limited until its density value has

dropped to near or below certain critical values. These values are the optimal densities given

by the Drake’s and Greenshields’ traffic stream models used. They are related to the capacity

or maximum flow of the highway being analyzed. A given highway is described as operating

at a congested or non-congested state when the traffic stream is flowing above or below the

capacity of the highway, respectively.
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We first look at Figure 6 for the modified Drake’s model. The optimal density, k0, is set to be

50 veh/km for this model. Initially the density of the platoon is below the optimal density and

therefore the highway is not congested. As a result vehicles in the 9 different classes are free

to overtake and move as desired, and the platoon disperses as depicted in the figure. The

second case for Drake’s model is an initial platoon of density 120 veh/km, much greater than

the highway’s optimal density. This time the highway is operating in a congested state and

this results in a non-dispersed tail of the platoon because overtaking is limited in such a

congested state. The front of the platoon still can disperse because the downstream end is

empty. Vehicles at the tail of the platoon however have to wait until the density drops near to

or below the optimal density. They are then free to disperse again when the highway is

operating in a non-congested state. 

Figures 11 and 12 represent similar cases to Figures 6 and 10, but with the modified Drake’s

model replaced by the modified Greenshields’ model. The optimal density of the modified

Greenshields’ model is given by 20
jamk

k � . Since kjam is set to be 200 veh/km the optimal

density is therefore equal to 100 veh/km. Similar results are obtained with the modified

Greenshields’ model. When the initial platoon has a density less than the optimal density,

dispersion occurs throughout the analysis (Figure 11). If the platoon is initially congested

with a density value above the optimal, dispersion is limited (Figure 12). Only when the

density of the platoon drops back to near or below the optimal density can vehicles overtake

easily and the dispersion behavior becomes clear. 
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4.4 Infinite number of driver classes

We might wonder what physical meaning the small staircases carry in the 9-class model. By

computing with different number of classes we have observed that the number of staircases is

always equal to the number of classes (this corresponds to the different wave speeds of the

different combinations of classes), and the strength of those staircases decreases with the

number of classes. 

We could thus consider an asymptotic case when the number of classes goes to infinity. The

model (3) then becomes again a scalar equation but with one more independent variable v,

corresponding to the distribution of driver classes.  It reads

 0),,(),,(
�

�

�
�

�

�

x
vtxq

t
vtxk , (37)

with the numerical flux given by

  � �2/)/),,((exp),,(),,( 2
0kvtxkvtxvkvtxq �� , for modified Drake’s form (38)

and

� �jam/),,(1),,(),,( kvtxkvtxvkvtxq �� , for modified Greenshields’ form. (39)

Other forms of traffic stream models can be considered in similar fashion. The boundary

conditions are now set as a function of the class variables � �v v v� min max, . We remark that

this continuous model has some similarity with the kinetic models, however no relaxation is

involved and this can be considered as a relaxed, equilibrium model. The main difference is
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that, while the conventional kinetic models consider a distribution of non-equilibrium speed

around an equilibrium value, our model assumes a continuous distribution of equilibrium

speed.

As example calculations, we assume a modified Drake’s form of traffic stream model, as in

equation (38), with k0 = 50 veh/km, and an initial platoon of maximum density 40 veh/km as

shown in Figure 1. The distribution of k everywhere in the platoon, as a function of v, follows

a continuous curve in the shape of Figure 13, left, which, when discretized using 9 points in

v, and suitably scaled, gives the original Figure 4. Thus, the M-class model can be considered

as a discretization of the continuous model (37) in the v variable. To demonstrate that the

solutions from the M-class model converge to those of the continuous model (37), we plot the

9-class, 21-class and 41-class density versus distance graphs at t = 0.015 hours, in Figure 13,

right, using WENO with 1600 points, which gives numerically convergent solutions. We can

clearly see that the solutions converge to smooth curves without staircases when the number

M of classes increases. There is not much noticeable difference when M increases beyond 41.

In Figure 14, we plot the density versus distance for various times on the left, and the flow

versus time for various spatial locations on the right, for the continuous model (37)

demonstrated by the M = 41 class model. It is interesting to note that a nice platoon

dispersion behavior is observed for this continuous model.

5. DISCUSSIONS AND CONCLUSIONS

The study of traffic flow using a macroscopic approach often involves a single conservation

law, or a system of conservation laws that are, in general, of hyperbolic type. The scalar

LWR model and those higher-order continuum models proposed so far contain hyperbolic
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partial differential equations. Care must be taken in solving these PDEs using numerical

methods due to the existence of singularities and multiple solutions. Fortunately much work

on numerical methods for hyperbolic PDEs has been carried out in the field of Computational

Fluid Mechanics (CFD), which can also be applied to traffic flow problems. In this paper we

applied one of the state-of-the-art methods called weighted essentially non-oscillatory

(WENO) scheme to obtain solutions for a recently proposed MCLWR model by Wong and

Wong (2001). The results of a series of numerical tests are encouraging and interesting.

Several conclusions can be drawn. First, for the 2-class model, the derived linearized wave

speeds give reasonable predictions of the actual nonlinear wave speeds. Analysis using

linearization on the MCLWR model also demonstrated that for this 2-class case the class-

characterized waves never travel faster than the fastest vehicle in the traffic stream.

Second, the fifth-order WENO scheme has been implemented to solve the MCLWR model

and it is more efficient than the first-order Lax-Friedrichs scheme and the first-order

Godunov scheme. The high-order WENO needs fewer grid points than the first-order

methods to obtain solutions of the same accuracy. The reduction factor is around 64 for the

Lax-Friedrichs scheme and 8 for the Godunov scheme. 

Third, from the convergence study of the numerical methods used in this paper, for first order

schemes, it might be premature to accept that a solution is converged, unless a very refined

mesh (e.g. 25600 points for the Lax-Friedrichs scheme) is used. Convergent solutions of the

evolution of initial platoons of vehicles show that the MCLWR model produces dispersed

platoons with staircase-like steps. We found that the number of steps is equal to the number

of classes in the traffic stream. Linearized analysis of the 2-class model in Section 2 shows

that there exist two class-characterized waves, which can also be generalized to the M-class
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model that there would be M different class-characterized waves traveling in the traffic

stream. The speed of each wave is characterized by the class-specific parameters in the

MCLWR model. It is believed that the formation of staircase is caused by these class-

characterized waves in the traffic stream. For the 2-class test case, each staircase is composed

of one class of driver only. However, this exclusivity property does not generally apply for

the cases with greater number of classes.

Finally, we have extended the MCLWR model to include a continuous equilibrium speed

distribution. Thus the M-class model can be considered as a discretization of this continuous

model. It has been shown, by increasing M, that the continuous model can predict platoon

dispersion behavior without the staircases observed in the discrete M-class model. This is

quite realistic as the actual equilibrium speed distribution might be expected to be continuous

in general. The actual distribution function has yet to be determined from field data; however

the underlying philosophy of the MCLWR model will not change.
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Figure 1 Initial density platoon on the example highway.
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Figure 2 The dispersion of platoon at time t = 0.01 hour.
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Figure 3 The wave speeds for the 2-class case.
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Figure 4 Distribution of drivers in the platoon.
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Figure 5 Density versus distance at t = 0.015 hour. Top left: Comparison between first
order Lax-Friedrichs with 6400 points (solid line) and WENO with 100 points
(circles); Top right: Convergence of WENO with 100 points (dash-dot line),
400 points (dashed line) and 1600 points (solid line); Bottom left:
Convergence of first order Lax-Friedrichs with 400 points (dash-double dots
line), 1600 points (dash-dot line), 6400 points (dashed line) and 25600 points
(solid line); Bottom right: Comparison between first order Lax-Friedrichs with
25600 points (solid line) and WENO with 400 points (circles).
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Figure 6 Case 1. Left: total density as a function of spatial location, for t = 0, 0.005, 0.010, … , 0.025 hours; Right: the flow as a function
of time t at x = 0.2, 0.4, 0.6, … , 2.0 km.

0.5 1.0 1.5 2.0

Distance (km)

0

5

10

15

20

25

30

35

40

45

D
en

si
ty

(v
eh

/k
m

)

t = 0.000

t = 0.005

t = 0.010

t = 0.015

t = 0.020

t = 0.025

0.00 0.01 0.02 0.03 0.04 0.05

Time (hour)

0

500

1000

1500

2000

2500

Fl
ow

(v
eh

/h
)

x = 0.2

x = 0.4

x = 0.6

x = 0.8

x = 1.0

x = 1.2

x = 1.4

x = 1.6

x = 1.8

x = 2.0



Figure 7 Total density as a function of spatial location, for t = 0, 0.005, 0.010, … , 0.030 hours, for the case of 9-class model with identical
free speed.
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Figure 8 First order Godunov solver. Top: convergence with mesh refinements; bottom:
density and flow evolution.
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Figure 9 Initial platoon with density at the high density regime.
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Figure 10 Case 2. Left: total density as a function of spatial location, for t = 0, 0.005, 0.010, … ,0.025 hours; Right: the flow as a function of
time t at x = 0.2, 0.4, 0.6, … , 2.0 km.
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Figure 11 Case 3. Left: total density as a function of spatial location, for t = 0, 0.005, 0.010, … , 0.025 hours; Right: the flow as a function
of time t at x = 0.2, 0.4, 0.6, … , 2.0 km.
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Figure 12 Case 4. Left: total density as a function of spatial location, for t = 0, 0.005, 0.010, … , 0.025 hours; Right: the flow as a function
of time t at x = 0.2, 0.4, 0.6, … , 2.0 km.
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Figure 13 Continuous in v model. Left: total density k as a function of v; Right: Convergence when the number of classes increases. Density
as a function of distance at t = 0.015. M = 9 classes (dash-dotted line), M = 21 class (dashed line) and M = 41 classes (solid line).

0.0 0.5 1.0 1.5 2.0

Distance (km)

0

5

10

15

20

25

30

35

40

D
en

si
ty

(v
eh

/k
m

)

M = 9
M = 21
M = 41

60 70 80 90 100 110 120

V (km/h)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

k

v



Figure 14 Continuous in v model for M = 41 classes. Left: total density as a function of spatial location, for t = 0, 0.005,
0.010, … , 0.025 hours; Right: the flow as a function of time t at x = 0.2, 0.4, 0.6, … , 2.0 km.
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Table 1 CUP times for the first order Godunov scheme and the 5-th WENO scheme
at the same level of accuracy. (on a SunBlade 1000 workstation)

First order Godunov (nx = 1600) 5-th order WENO (nx = 200)
t = 0.1 20 sec 4 sec
t = 0.2 39 sec 8 sec

First order Godunov (nx = 6400) 5-th order WENO (nx = 800)
t = 0.1 376 sec 71 sec
t = 0.2 722 sec 138 sec
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